Out of the Box Metrics
ModelOp Center ships with multiple out-of-the-box monitors, which are registered as associated models. The user may add one of these associated monitors to his/her model or decide to write a custom metric function (see next section). These monitors can also be customized via the ModelOp monitoring Python package. See /wiki/spaces/dv33/pages/1978445995 for documentation on the monitoring package. Here is a sampling of out of the box tests and monitors:
Quality Performance:
Ensure that model decisions and outcomes are within established data quality controls, eliminating the risk of unexpected and inaccurate decisions. Quality performance monitors include:
Data drift of input data
Concept drift of output
Statistical effectiveness of model output
Risk Performance
Controlling risk and ensuring models are constantly operating within established business risk and compliance ranges as well as delivering ethically fair results is a constant challenge. Prevent out-of-compliance issues with automated, continuous risk performance monitoring. Risk performance monitors include:
Ethical fairness of model output
Interpretability of model features weighting
Next Article: /wiki/spaces/dv33/pages/1978437047 >