This article describes how ModelOp Center enables on-going Statistical Monitoring.
Table of Contents
Introduction
Monitoring ..
Details
As the same data set may serve several models, you can write one drift detection model to associate to several models. This association is made during the Model Lifecycle process. The drift model can compare the training data of the associated models to a given batch of data. The following is a simple example:
import pandas as pd import numpy as np from scipy.stats import ks_2samp from scipy.stats import binom_test #modelop.init def begin(): global train, numerical_features train = pd.read_csv('training_data.csv') numerical_features = train.select_dtypes(['int64', 'float64']).columns pass #modelop.score def action(datum): yield datum #modelop.metrics def metrics(data): ks_tests = [ks_2samp(train.loc[:, feat], data.loc[:, feat]) \ for feat in numerical_features] pvalues = [x[1] for x in ks_tests] ks_pvalues = dict(zip(numerical_features, pvalues)) yield dict(pvalues=ks_pvalues)
This drift model executes a two-sample Kolmogorov-Smirnov test between numerical features of the training data and the incoming batch and reports the p-values. If the p-values are sufficiently large (over 0.01 or 0.05), you can assume that the two samples are similar. If the p-values are small, you can assume that these samples are different and generate an alert.
If the training data is too large to fit in memory, you can save summary statistics about the training data and save those as, e.g., a pickle file and read those statistics in during the init function of the drift model. The metrics function can contain other statistical tests to compare those statistics to the statistics of the incoming batch.
Spark Models
A similar drift detection method may be used for PySpark models with HDFS assets by parsing the HDFS asset URLs from the parameters of the metrics function. The following is a simple example:
from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import isnull, when, count from pyspark.sql.functions import udf from pyspark.sql.types import ArrayType, FloatType from pyspark.ml.feature import StringIndexer from pyspark.ml.feature import VectorAssembler from pyspark.ml.classification import RandomForestClassificationModel from pyspark.ml.evaluation import MulticlassClassificationEvaluator #modelop.init def begin(): print("Begin function...") global SPARK SPARK = SparkSession.builder.appName("DriftTest").getOrCreate() global MODEL MODEL = RandomForestClassificationModel.load("/hadoop/demo/titanic-spark/titanic") #modelop.score def action(datum): yield datum def metrics(external_inputs, external_outputs, external_model_assets): # Grab single input asset and single output asset file paths input_asset_path = external_inputs[0]["fileUrl"] output_asset_path = external_outputs[0]["fileUrl"] input_df = SPARK.read.format("csv").option("header", "true").load(input_asset_path) predictions = predict(input_df) # Select (prediction, true label) and compute test error evaluator = MulticlassClassificationEvaluator( labelCol="Survived", predictionCol="prediction", metricName="accuracy" ) accuracy = evaluator.evaluate(predictions) output_df = SPARK.createDataFrame([{"accuracy": accuracy}]) print("Metrics output:") output_df.show() output_df.coalesce(1).write.mode("overwrite").option("header", "true").format( "json" ).save(output_asset_path) SPARK.stop() def predict(input_df): dataset = input_df.select( col("Survived").cast("float"), col("Pclass").cast("float"), col("Sex"), col("Age").cast("float"), col("Fare").cast("float"), col("Embarked"), ) dataset = dataset.replace("?", None).dropna(how="any") dataset = ( StringIndexer(inputCol="Sex", outputCol="Gender", handleInvalid="keep") .fit(dataset) .transform(dataset) ) dataset = ( StringIndexer(inputCol="Embarked", outputCol="Boarded", handleInvalid="keep") .fit(dataset) .transform(dataset) ) dataset = dataset.drop("Sex") dataset = dataset.drop("Embarked") required_features = ["Pclass", "Age", "Fare", "Gender", "Boarded"] assembler = VectorAssembler(inputCols=required_features, outputCol="features") transformed_data = assembler.transform(dataset) predictions = MODEL.transform(transformed_data) return predictions
This model uses a Spark MulticlassClassificationEvaluator
to determine the accuracy of the predictions generated by the titanic model.
Next Article: Model Governance: Standard Model Definition >