Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

This article describes how ModelOp Center enables on-going ongoing Drift Monitoring.

Table of Contents

...

ModelOp Center provides a number of Drift monitors out of the box, but also allows you to write your own drift monitor. The subsequent sections describe how to add a drift monitor (assuming an out-of-the-box monitor) and the detailed makeup of a drift monitor for multiple types of models.

...

  1. Define KPIs and thresholds for model 

    1. Edit the provided Data-drift.dmn file to reflect your desired tolerance for data drift

    2. Repeat for the provided Concept-drift.dmn file Performance-test.dmn

    3. Save the files locally to your machine.

  2. Associate Monitor models to snapshot

    1. Navigate to the specific model snapshot

  3. Using the associated models Associated Models widget, create a data drift association

    1. Image RemovedImage Added
    2. Use the provided data and the DMN you made in step 2.

      1. Use the provided data and the DMN you made in step 2.

  4. Before leaving the Model snapshot screen, copy the ID from the URL bar, you’ll need this for later

  5. To test, run a monitoring jobs job manually

    1. Make a REST call to MOC’s automation engine to trigger a data drift detection job on your model

      1. Obtain a valid auth token

      2. Make a call to the MLC API to initiate the monitor:

...

Code Block
languagepy
import pandas as pd
import numpy as np
from scipy.stats import ks_2samp
from scipy.stats import binom_test


# #modelopmodelop.init
def begin():
    """
    A function to read training data and save it, along with it
    numerical features, globally.
    """
    
    global train, numerical_features
    
    train = pd.read_csv('training_data.csv')
    numerical_features = train.select_dtypes(['int64', 'float64']).columns


# modelop.metrics
def metrics(data):
    """
    A function to compute passKS 
#modelop.score
def action(datum):
p-values on input (sample) data
   yield datumas compared #modelop.metricsto deftraining metrics(baseline data):
    """
    
    ks_tests = [ks_2samp(train.loc[:, feat], data.loc[:, feat]) \
                for feat in numerical_features]
    pvalues = [x[1] for x in ks_tests]
    ks_pvalues = dict(zip(numerical_features, pvalues))
    
    yield dict(pvalues=ks_pvalues)

This drift model executes a two-sample Kolmogorov-Smirnov test between numerical features of the training data and the incoming batch and reports the p-values. If the p-values are sufficiently large (over 0.01 or 0.05), you can assume that the two samples are similar. If the p-values are small, you can assume that these samples are different and generate an alert.

...

Code Block
languagepy
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.sql.functions import isnull, when, count
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, FloatType
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import RandomForestClassificationModel
from pyspark.ml.evaluation import MulticlassClassificationEvaluator


# #modelopmodelop.init
def begin():
    print("Begin function...")

    global SPARK
    SPARK = SparkSession.builder.appName("DriftTest").getOrCreate()

    global MODEL
    MODEL = RandomForestClassificationModel.load("/hadoop/demo/titanic-spark/titanic")
 #modelop.score def action(datum): 
#   yield datum

modelop.metrics
def metrics(external_inputs, external_outputs, external_model_assets):
    # Grab single input asset and single output asset file paths
    input_asset_path = external_inputs[0]["fileUrl"]
    output_asset_path = external_outputs[0]["fileUrl"]
    
    input_df = SPARK.read.format("csv").option("header", "true").load(input_asset_path)
    predictions = predict(input_df)

    # Select (prediction, true label) and compute test error
    evaluator = MulticlassClassificationEvaluator(
        labelCol="Survived", predictionCol="prediction", metricName="accuracy"
    )
    accuracy = evaluator.evaluate(predictions)

    output_df = SPARK.createDataFrame([{"accuracy": accuracy}])
    print("Metrics output:")
    output_df.show()

    output_df.coalesce(1).write.mode("overwrite").option("header", "true").format(
        "json"
    ).save(output_asset_path)

    SPARK.stop()
    
def predict(input_df):
    dataset = input_df.select(
        col("Survived").cast("float"),
        col("Pclass").cast("float"),
        col("Sex"),
        col("Age").cast("float"),
        col("Fare").cast("float"),
        col("Embarked"),
    )

    dataset = dataset.replace("?", None).dropna(how="any")

    dataset = (
        StringIndexer(inputCol="Sex", outputCol="Gender", handleInvalid="keep")
        .fit(dataset)
        .transform(dataset)
    )

    dataset = (
        StringIndexer(inputCol="Embarked", outputCol="Boarded", handleInvalid="keep")
        .fit(dataset)
        .transform(dataset)
    )

    dataset = dataset.drop("Sex")
    dataset = dataset.drop("Embarked")

    required_features = ["Pclass", "Age", "Fare", "Gender", "Boarded"]

    assembler = VectorAssembler(inputCols=required_features, outputCol="features")
    transformed_data = assembler.transform(dataset)

    predictions = MODEL.transform(transformed_data)
    
    return predictions

This model uses a Spark MulticlassClassificationEvaluator to determine the accuracy of the predictions generated by the titanic model.

...