This article describes how ModelOp Center enables on-going ongoing Drift Monitoring.
Table of Contents
...
ModelOp Center provides a number of Drift monitors out of the box, but also allows you to write your own drift monitor. The subsequent sections describe how to add a drift monitor (assuming an out-of-the-box monitor) and the detailed makeup of a drift monitor for multiple types of models.
...
Define KPIs and thresholds for model
Edit the provided
Data-drift.dmn
file to reflect your desired tolerance for data driftRepeat for the provided
Concept-drift.dmn
filePerformance-test.dmn
Save the files locally to your machine.
Associate Monitor models to snapshot
Navigate to the specific model snapshot
Using the associated models Associated Models widget, create a data drift association
Use the provided data and the DMN you made in step 2.
Use the provided data and the DMN you made in step 2.
Before leaving the Model snapshot screen, copy the ID from the URL bar, you’ll need this for later
To test, run a monitoring jobs job manually
Make a REST call to MOC’s automation engine to trigger a data drift detection job on your model
Obtain a valid auth token
Make a call to the MLC API to initiate the monitor:
...
Code Block | ||
---|---|---|
| ||
import pandas as pd import numpy as np from scipy.stats import ks_2samp from scipy.stats import binom_test # #modelopmodelop.init def begin(): """ A function to read training data and save it, along with it numerical features, globally. """ global train, numerical_features train = pd.read_csv('training_data.csv') numerical_features = train.select_dtypes(['int64', 'float64']).columns # modelop.metrics def metrics(data): """ A function to compute passKS #modelop.score def action(datum): p-values on input (sample) data yield datumas compared #modelop.metricsto deftraining metrics(baseline data): """ ks_tests = [ks_2samp(train.loc[:, feat], data.loc[:, feat]) \ for feat in numerical_features] pvalues = [x[1] for x in ks_tests] ks_pvalues = dict(zip(numerical_features, pvalues)) yield dict(pvalues=ks_pvalues) |
This drift model executes a two-sample Kolmogorov-Smirnov test between numerical features of the training data and the incoming batch and reports the p-values. If the p-values are sufficiently large (over 0.01 or 0.05), you can assume that the two samples are similar. If the p-values are small, you can assume that these samples are different and generate an alert.
...
Code Block | ||
---|---|---|
| ||
from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import isnull, when, count from pyspark.sql.functions import udf from pyspark.sql.types import ArrayType, FloatType from pyspark.ml.feature import StringIndexer from pyspark.ml.feature import VectorAssembler from pyspark.ml.classification import RandomForestClassificationModel from pyspark.ml.evaluation import MulticlassClassificationEvaluator # #modelopmodelop.init def begin(): print("Begin function...") global SPARK SPARK = SparkSession.builder.appName("DriftTest").getOrCreate() global MODEL MODEL = RandomForestClassificationModel.load("/hadoop/demo/titanic-spark/titanic") #modelop.score def action(datum): # yield datum modelop.metrics def metrics(external_inputs, external_outputs, external_model_assets): # Grab single input asset and single output asset file paths input_asset_path = external_inputs[0]["fileUrl"] output_asset_path = external_outputs[0]["fileUrl"] input_df = SPARK.read.format("csv").option("header", "true").load(input_asset_path) predictions = predict(input_df) # Select (prediction, true label) and compute test error evaluator = MulticlassClassificationEvaluator( labelCol="Survived", predictionCol="prediction", metricName="accuracy" ) accuracy = evaluator.evaluate(predictions) output_df = SPARK.createDataFrame([{"accuracy": accuracy}]) print("Metrics output:") output_df.show() output_df.coalesce(1).write.mode("overwrite").option("header", "true").format( "json" ).save(output_asset_path) SPARK.stop() def predict(input_df): dataset = input_df.select( col("Survived").cast("float"), col("Pclass").cast("float"), col("Sex"), col("Age").cast("float"), col("Fare").cast("float"), col("Embarked"), ) dataset = dataset.replace("?", None).dropna(how="any") dataset = ( StringIndexer(inputCol="Sex", outputCol="Gender", handleInvalid="keep") .fit(dataset) .transform(dataset) ) dataset = ( StringIndexer(inputCol="Embarked", outputCol="Boarded", handleInvalid="keep") .fit(dataset) .transform(dataset) ) dataset = dataset.drop("Sex") dataset = dataset.drop("Embarked") required_features = ["Pclass", "Age", "Fare", "Gender", "Boarded"] assembler = VectorAssembler(inputCols=required_features, outputCol="features") transformed_data = assembler.transform(dataset) predictions = MODEL.transform(transformed_data) return predictions |
This model uses a Spark MulticlassClassificationEvaluator
to determine the accuracy of the predictions generated by the titanic model.
...